Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances.

نویسندگان

  • Gennady Shvets
  • Yaroslav A Urzhumov
چکیده

Electromagnetic properties of periodic two-dimensional subwavelength structures consisting of closely packed inclusions of materials with negative dielectric permittivity epsilon in a dielectric host with positive epsilon(h) can be engineered using the concept of multiple electrostatic resonances. Fully electromagnetic solutions of Maxwell's equations reveal multiple wave propagation bands, with the wavelengths much longer than the nanostructure period. Some of these bands are described using the quasistatic theory of the effective dielectric permittivity epsilon(qs). Those bands exhibit multiple cutoffs and resonances which are found to be related to each other through a duality condition. An additional propagation band characterized by a negative magnetic permeability is found. Imaging with subwavelength resolution in that band is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative index meta-materials based on two-dimensional metallic structures

The electromagnetic properties of two-dimensional metallic nanostructures in the optical frequency range are studied. One example of such a structure is a periodic array of thin metallic strip pairs. The magnetic response of these structures is studied, as is the closely related emergence of the negative index of refraction propagation bands. The presence of such bands is found to critically de...

متن کامل

Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties

Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene ...

متن کامل

Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation

The surface integral formulation is a flexible, multiscale and accurate tool to simulate light scattering on nanostructures. Its generalization to periodic arrays is introduced in this paper. The general electromagnetic scattering problem is reduced to a discretizated model using the Method of Moments on the surface of the scatterers in the unit cell. The study of the resonances of an array of ...

متن کامل

Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials

An ab initio theory for Fano resonances in plasmonic nanostructures and metamaterials is developed using the Feshbach formalism. It reveals the role played by the electromagnetic modes and material losses in the system, and enables the engineering of Fano resonances in arbitrary geometries. A general formula for the asymmetric resonance in a nonconservative system is derived. The influence of t...

متن کامل

Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays

Structuring metallic and magnetic materials on subwavelength scales allows for extreme confinement and a versatile design of electromagnetic field modes. This may be used, for example, to enhance magneto-optical responses, to control plasmonic systems using a magnetic field, or to tailor magneto-optical properties of individual nanostructures. Here we show that periodic rectangular arrays of ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 93 24  شماره 

صفحات  -

تاریخ انتشار 2004